In a probability proof I've arrived at the sum \sum\limits_{n=i+1}^\infty \binom{n-1}{i} \left(\frac{1}{3}\right)^{n} where i is constant. WolframAlpha gives a simple expression for this sum, but I've been unable to find it myself: I've tried rewriting it as \frac{1}{i!}\sum\limits_{n=i+1}^\infty \frac{(n-1)!}{(n-1-i)!} \left(\frac{1}{3}\right)^{n} but this hasn't advanced me much.
How can I find this sum?
Answer
Using Grigory's Wiki link, we wish to adjust our sum to start at zero.
Find m such that n = i+1 implies m=0: m = n-(i+1) = n-i-1. Now adjust the term inside the binomial coefficient. Since n = m+i+1, then n-1 = m+i.
Therefore,
\sum_{n=i+1}^\infty \begin{pmatrix} n-1 \\ i\end{pmatrix} \left(\frac13\right)^n = \sum_{m=0}^\infty \begin{pmatrix} m+i \\ i \end{pmatrix}\left(\frac13\right)^{m+i+1}.
Now, i is fixed inside the sum. So let's re-write:
\sum_{m=0}^\infty \begin{pmatrix} m+i \\ i \end{pmatrix}\left(\frac13\right)^{m+i+1} = \left(\frac13\right)^{i+1}\sum_{m=0}^\infty \begin{pmatrix} m+i \\ i \end{pmatrix}\left(\frac13\right)^m.
The binomial coefficient is symmetric, in other words
\begin{pmatrix} p \\ q \end{pmatrix} = \frac{p!}{q!(p-q)!} = \frac{p!}{(p-q)!(p-(p-q))!} = \begin{pmatrix} p \\ p-q\end{pmatrix}.
Therefore, \begin{pmatrix} m+i \\ i\end{pmatrix} = \begin{pmatrix} m+i \\ m+i-i \end{pmatrix} = \begin{pmatrix} m+i \\ m \end{pmatrix}.
Now our series becomes
\begin{align*} \left(\frac13\right)^{i+1}\sum_{m=0}^\infty \begin{pmatrix} m+i \\ i \end{pmatrix}\left(\frac13\right)^m &= \left(\frac13\right)^{i+1}\sum_{m=0}^\infty \begin{pmatrix} m+i \\ m \end{pmatrix}\left(\frac13\right)^{m} \\ &= \frac{\left(\frac13\right)^{i+1}}{\left(1-\frac13\right)^{i+1}}\\ &= \frac{\left(\frac13\right)^{i+1}}{\left(\frac23\right)^{i+1}} \\ &= 2^{-i-1}. \end{align*}
Note that the second step uses the special case linked in the Wiki article.
No comments:
Post a Comment