Monday, 19 March 2018

combinatorics - Combinatorial interpretation for the identity $sumlimits_ibinom{m}{i}binom{n}{j-i}=binom{m+n}{j}$?

A known identity of binomial coefficients is that
$$
\sum_i\binom{m}{i}\binom{n}{j-i}=\binom{m+n}{j}.
$$
Is there a combinatorial proof/explanation of why it holds? Thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...