Thursday, 8 March 2018

calculus - Show that if $1> x>0$, then $x-1 ≥ ln(x) ≥ 1−frac{1}{x}$

Show that if $0 < x < 1$, then $$x-1 ≥ \ln(x) ≥ 1−\frac{1}{x}.$$



I know how to prove it using the MVT and I can prove it for $x> 1$ but I don't understand how to prove it for $x > 0$ .

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...