Show that if $0 < x < 1$, then $$x-1 ≥ \ln(x) ≥ 1−\frac{1}{x}.$$
I know how to prove it using the MVT and I can prove it for $x> 1$ but I don't understand how to prove it for $x > 0$ .
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment