How do I get:
$$\cos{\theta} \lt \frac{\sin{\theta}}{\theta} \lt 1$$
Answer
For $0< t<\pi/2$:
$\ \ \ \bullet$ Using similar triangles:
$$\color{darkgreen}{\tan t}={\color{maroon}{\sin t}\over\color{darkblue}{\cos t}} ={
{\text{length}( \color{darkgreen} {\overline{{IZ}})} }\over 1 }\quad \Longrightarrow \quad\color{darkgreen}{\tan t}=\text{length}(\color{darkgreen}{\overline{IZ}})$$
$\ \ \ \bullet$ $t$ is the length of the arc $\color{orange}{IQ}$.
$\ \ \ \bullet$ Area of the circular sector $O\color{orange}{IQ}={t\over 2\pi}\cdot \pi\cdot 1^2={t\over2}$.
$\ \ \ \bullet$ Area of $\triangle OQI={1\over2}\cdot1\cdot\color{maroon}{\sin t}$.
$\ \ \ \bullet$ Area of $\triangle OIZ={1\over2}\cdot1\cdot\color{darkgreen}{\tan t}$.
From the diagram we have
$$
\text {area}(\triangle OQI) \le
\text {area}(\text{circular sector} OQI) \le
\text {area}(\triangle OZI)
$$
$$
{1\over2}\cdot1\cdot\sin t\lt{1\over2} t\lt {1\over2}\cdot1\cdot\tan t
$$
$$
\sin t\lt t\lt \cdot\tan t
$$
$$
{1\over\sin t}\gt {1\over t}\gt {\cos t\over \sin t }
$$
$$
\cos t\lt {\sin t\over t}\lt 1.
$$
No comments:
Post a Comment