How do I get:
cosθ<sinθθ<1
Answer
For 0<t<π/2:
∙ Using similar triangles:
tant=sintcost=length(¯IZ)1⟹tant=length(¯IZ)
∙ t is the length of the arc IQ.
∙ Area of the circular sector OIQ=t2π⋅π⋅12=t2.
∙ Area of △OQI=12⋅1⋅sint.
∙ Area of △OIZ=12⋅1⋅tant.
From the diagram we have
area(△OQI)≤area(circular sectorOQI)≤area(△OZI)
12⋅1⋅sint<12t<12⋅1⋅tant
sint<t<⋅tant
1sint>1t>costsint
cost<sintt<1.
No comments:
Post a Comment