What is an example of an open map $(0,1) \to \mathbb{R}$ which is not continuous? Is it even possible for one to exist? What about in higher dimensions? The simplest example I've been able to think of is the map $e^{1/z}$ from $\mathbb{C}$ to $\mathbb{C}$ (filled in to be $0$ at $0$). There must be a simpler example, using the usual Euclidean topology, right?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment