Monday, 29 October 2018

calculus - Alternative way to prove limntoinftyfrac2nn!=0?




It follows easily from the convergence of n=02nn! that

lim
Other than the Stirling's formula, are there any "easy" alternatives to show (1)?


Answer



Yes: note that
0\leq \frac{2^n}{n!}\leq 2\Big(\frac{2}{3}\Big)^{n-2}
for n\geq 3, and then use the squeeze theorem.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...