I had a lecture earlier today where the use of partial fractions was introduced. He used partial fractions and a more 'brute force' method to $\int\frac{1}{(x^2 + 5x + 6)}\mathrm dx$. I could solve this using partial fractions but I need to be reminded of the more difficult method(which I've learned months ago) for my current maths subject's purposes. I've been trying to find a solution that yields to $\ln\left|\frac{(x + 2)}{(x + 3)}\right| + C$ to no avail. Can anyone help me how to solve the problem without using partial fractions?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment