Is there a closed form for this series values:
$$
\sum_{k=1}^{\infty} (-1)^k\frac{H_k^{(n)}}{k}
$$
where
$$
H_k^{(n)}=\sum_{i=1}^k \frac{1}{i^n}
$$
and n is a positive integer.
Thanks!
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment