Monday, 22 October 2018

integration - Evaluating the definite integral $int_{-c}^{c} e^{-ax^2}cos^2(bx) ,mathrm{d}x$

How can one evaluate the following integral?



$$\int_{-c}^{c} e^{-ax^2}\cos^2(bx) \,\mathrm{d}x$$




Wolfram Alpha gives this. Is there not a more compact form?



If $\int_{-c}^{c} e^{-ax^2} \, \mathrm{d}x=k$, then can we express the first integral in terms of $k$? Thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...