Monday, 29 October 2018

sequences and series - Show that if summk=1ck=0, suminftyn=0summk=1fraccknm+k converges.



This is a generalization of this:
Is this:n=1(1)n(n1)21n a convergent series?




Here is my solution.



To show that
if
mk=1ck=0,
n=0mk=1cknm+k
converges,

let
s(n)=mk=1cknm+k.
Then



s(n)mk=1cknm=mk=1cknm+kmk=1cknm=mk=1ck(1nm+k1nm)=mk=1cknm(nm+k)(nm+k)nm=mk=1ckk(nm+k)nm=1n2mk=1ckk(m+k/n)m



Since
mk=1cknm=1nmmk=1ck=0,



|s(n)|=|1n2mk=1ckk(m+k/n)m|1n2mk=1|ckk(m+k/n)m|<1n2mk=1|ckk(m)m|=1n2m2mk=1|kck|=Cn2m2



where
C=mk=1|kck|.



Therefore
n=1s(n)

is absolutely convergent.


Answer



Another way can be this. Let Ak=skcs. We have by partial summation kmcknm+k=km1Ak(nm+k)(nm+k+1)=1n2km1Ak(m+k/n)(m+(k+1)/n)

then |kmcknm+k|1n2km1|Ak|(m+k/n)(m+(k+1)/n)1n2m2km1|Ak|=
=Cn2m2.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...