This is a generalization of this:
Is this:∑∞n=1(−1)n(n−1)21n a convergent series?
Here is my solution.
To show that
if
∑mk=1ck=0,
∑∞n=0∑mk=1cknm+k
converges,
let
s(n)=∑mk=1cknm+k.
Then
s(n)−∑mk=1cknm=∑mk=1cknm+k−∑mk=1cknm=∑mk=1ck(1nm+k−1nm)=∑mk=1cknm−(nm+k)(nm+k)nm=−∑mk=1ckk(nm+k)nm=−1n2∑mk=1ckk(m+k/n)m
Since
∑mk=1cknm=1nm∑mk=1ck=0,
|s(n)|=|1n2∑mk=1ckk(m+k/n)m|≤1n2∑mk=1|ckk(m+k/n)m|<1n2∑mk=1|ckk(m)m|=1n2m2∑mk=1|kck|=Cn2m2
where
C=∑mk=1|kck|.
Therefore
∑∞n=1s(n)
is absolutely convergent.
Answer
Another way can be this. Let Ak=∑s≤kcs. We have by partial summation ∑k≤mcknm+k=∑k≤m−1Ak(nm+k)(nm+k+1)=1n2∑k≤m−1Ak(m+k/n)(m+(k+1)/n)
then |∑k≤mcknm+k|≤1n2∑k≤m−1|Ak|(m+k/n)(m+(k+1)/n)≤1n2m2∑k≤m−1|Ak|=
=Cn2m2.
No comments:
Post a Comment