Tuesday, 16 October 2018

Series, computing the limit $limlimits_{ntoinfty}frac{1+2+cdots+n}{n^3}$




How to compute the following limit? The series is given by



$$\lim_{n\rightarrow\infty}\frac{1}{n^3}(1+2+\cdots+n)$$



Thanks for your help...


Answer



Just for fun:



$$\lim_{n\rightarrow\infty}\frac{1}{n}\left(\frac{1}{n}\frac{1}{n}+\frac{2}{n}\frac{1}{n}+\ldots+\frac{n}{n}\frac{1}{n}\right)=\lim_{n\rightarrow\infty}\frac{1}{n}\times\int_{0}^{1}\text{d}x=0$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...