Saturday, 27 October 2018

Searching function starting exactly constant and approaching another constant

for the default of an R API parameter i seek a function that has the property of yielding a good guess.




  • I want the function to be defined for $\mathbb Z^+$ (But no reason not to define it for $\mathbb R^+$, i guess)

  • I want it to be smooth

  • It should satisfy both




    $$\mathrm f(x_{small}) = 1 \forall x_{small} \in \left(0, k\right]$$
    $$\lim_{x \rightarrow \infty} \mathrm f(x) = l$$




edit to be clear: $k$ and $l$ should be constants appearing in the function definition.



E.g. with $k = 1000$ and $l = 0$, the $f(x) = 1 \forall x \in (0, 1000]$. Then it should gradually decline and approach 0.



To simplify, the function can be written as:




$$
\mathrm f(x) = \begin{cases}
1 & \text{if } x \le k \\
[\dots] & \text{otherwise}
\end{cases}
$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...