Tuesday, 4 December 2018

complex analysis - Evaluate P.V.intinfty0fracxalphax(x+1)dx where $0 < alpha




Evaluate
P.V.0xαx(x+1)dx
where 0<α<1







Thm
Let P and Q be polynomials of degree m and n,respectively, where nm+2. If Q(x)0. for Q has a zero of order at most 1 at the origin and f(z)=zαP(z)Q(z), where 0<α<1 then
P.V,0xαP(x)Q(x)dx=2πi1eiα2πkj=1Res[f,zj]
where z1,z2,,zk are the nonzero poles of PQ






Attempt




Got that P(x)=1 where its degree m=1 and q(x)=x(x+1) its degree is n=1 so it is not the case that nm+2 because 21+2


Answer



We assume 0<α<1. We have




P.V.0xαx(x+1)dx=πsin(απ).





Hint. One may prove that
0xαx(x+1)dx=10xαx(x+1)dx+1xαx(x+1)dx=10xα1x+1dx+01xα11+1x(dxx2)=10xα11+xdx+10xα1+xdx=10xα1(1x)1x2dx+10xα(1x)1x2dx=10xα1(1x)1x2dx+10xα(1x)1x2dx=12ψ(α+12)12ψ(α2)+12ψ(1α2)12ψ(1α2)=πsin(απ) where we have used the classic integral representation of the digamma function
101ta11tdt=ψ(a)+γ,a>1, and the properties
ψ(a+1)ψ(a)=1a,ψ(a)ψ(1a)=πcot(aπ).


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...