Saturday, 22 December 2018

sequences and series - proof of sumin=1nftyncdotxn=fracx(x1)2




I know that the Series n=1nxn converges to x(x1)2 but I'm not sure how to show it. I'm pretty sure that has been asked before, but I wasn't able to find anything...


Answer



Let Sn=nk=1kxk



Assuming |x|<1,
SnxSn=nk=1xknxn+1=x(1xn)1xnxn+1Sn=x(1xn)(1x)2nxn+11x



Now, if |x|<1, then lim supSo, by ratio test, the series \displaystyle \sum_{k=1}^n kx^k converges and hence \lim_{n\rightarrow \infty}nx^{n+1}=x\lim_{n\rightarrow \infty}nx^{n}=0




So, S=\sum_{n=1}^{\infty}nx^n=\lim_{n\rightarrow \infty}S_n=\frac{x}{(1-x)^2}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...