Tuesday, 25 December 2018

sequences and series - How to prove this identity $pi=sumlimits_{k=-infty}^{infty}left(frac{sin(k)}{k}right)^{2};$?



How to prove this identity? $$\pi=\sum_{k=-\infty}^{\infty}\left(\dfrac{\sin(k)}{k}\right)^{2}\;$$

I found the above interesting identity in the book $\bf \pi$ Unleashed.



Does anyone knows how to prove it?



Thanks.


Answer



Find a function whose Fourier coefficients are $\sin{k}/k$. Then evaluate the integral of the square of that function.



To wit, let




$$f(x) = \begin{cases} \pi & |x|<1\\0&|x|>1 \end{cases}$$



Then, if



$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i k x}$$



then



$$c_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: f(x) e^{i k x} = \frac{\sin{k}}{k}$$




By Parseval's Theorem:



$$\sum_{k=-\infty}^{\infty} \frac{\sin^2{k}}{k^2} = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: |f(x)|^2 = \frac{1}{2 \pi} \int_{-1}^{1} dx \: \pi^2 = \pi $$



ADDENDUM



This result is easily generalizable to



$$\sum_{k=-\infty}^{\infty} \frac{\sin^2{a k}}{k^2} = \pi\, a$$




where $a \in[0,\pi)$, using the function



$$f(x) = \begin{cases} \pi & |x|a \end{cases}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...