Compute the determinant of the nun matrix:
$$
\begin{pmatrix}
2 & 1 & \ldots & 1 \\
1 & 2 & \ldots & 1\\
\vdots & \vdots & \ddots & \vdots\\
1 & 1 &\ldots & 2
\end{pmatrix}
$$
For $n=2$, I have$$
\begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}
$$
Then $det = 3$.
For $n=3$, we have
$$
\begin{pmatrix}
2 & 1 & 1\\
1 & 2 & 1\\
1 & 1 & 2 \\
\end{pmatrix}
$$
Then $det = 4$.
For $n=4$ again we have
$$
\begin{pmatrix}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1\\
1 & 1 & 2 & 1\\
1 & 1 & 1 & 2
\end{pmatrix}
$$
Then $det = 5$
How can I prove that the determinant of nun matrix is $n+1$.
Answer
A standard result (http://en.wikipedia.org/wiki/Matrix_determinant_lemma) is $\det(I+AB) = \det(I+BA)$.
Since the matrix above can be written as $I+ e e^T$, where $e$ is a vector of ones, we have $\det(I+ e e^T) = \det(1+ e^T e) = 1+e^Te = n+1$.
No comments:
Post a Comment