This is what I did:
$$\sqrt{3x}+\sqrt{2x}=17$$
$$\implies\sqrt{3x}+\sqrt{2x}=17$$
$$\implies\sqrt{3}\sqrt{x}+\sqrt{2}\sqrt{x}=17$$
$$\implies\sqrt{x}(\sqrt{3}+\sqrt{2})=17$$
$$\implies x(5+2\sqrt{6})=289$$
I don't know how to continue. And when I went to wolfram alpha, I got:
$$x=-289(2\sqrt{6}-5)$$
Could you show me the steps to get the final result?
Thank you.
Friday, 22 February 2013
algebra precalculus - Solve $sqrt{3x}+sqrt{2x}=17$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment