Sunday, 3 February 2013

How to solve this limit without the L'Hospital?



How would one evaluate the following limit without using L'Hospital Rule




lim



the result should be 1/3.


Answer



Hint: Use



\dfrac{\sin(x+1)}{x^3+1}=\dfrac{\sin(x+1)}{(x+1)(x^2-x+1)}



and




\lim_{u\to 0} \dfrac{\sin u }{u}=1.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...