How would one evaluate the following limit without using L'Hospital Rule
lim
the result should be 1/3.
Answer
Hint: Use
\dfrac{\sin(x+1)}{x^3+1}=\dfrac{\sin(x+1)}{(x+1)(x^2-x+1)}
and
\lim_{u\to 0} \dfrac{\sin u }{u}=1.
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment