Sunday, 3 February 2013

How to solve this limit without the L'Hospital?



How would one evaluate the following limit without using L'Hospital Rule




$$\lim_{x\to -1}\dfrac{\sin(x+1)}{x^3+1}$$



the result should be $1/3$.


Answer



Hint: Use



$$\dfrac{\sin(x+1)}{x^3+1}=\dfrac{\sin(x+1)}{(x+1)(x^2-x+1)}$$



and




$$\lim_{u\to 0} \dfrac{\sin u }{u}=1.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...