Given z∈C with |z|=1, then prove that the equation (1+ia1−ia)4=z has all roots real and distinct
My Attempt
z=eiθ⟹z1/4=eiθ/4=1+ia1−ia.11/4=1+ia1−ia.(1,−1,i,−i)
Is it correct to introduce the quadratic root of unity for the complete solution ?
Case 1: 11/4=1
1ia=eiθ/4+1eiθ/4−1=2cos2θ/8+2isinθ/8.cosθ/8−2sin2θ/8+2isinθ/8.cosθ/81ia=icotθ/8a=−tanθ/8
Case 2: 11/4=−1
1ia=−eiθ/4+1−eiθ/4−1=2sin2θ/8−2isinθ/8.cosθ/8−2cos2θ/8−2isinθ/8.cosθ/81ia=itanθ/8⟹a=−cotθ/8
Case 3: 11/4=−i
1ia=ieiθ/4+1ieiθ/4−1=1−sinθ/4+icosθ/4−1−sinθ/4+icosθ/4=1−cos(π/2−θ/4)+isin(π/2−θ/4)−1−cos(π/2−θ/4)+isin(π/2−θ/4)=2sin2(π/4−θ/8)+2isin(π/4−θ/8)cos(π/4−θ/8)−2cos2(π/4−θ/8)+2isin(π/4−θ/8)cos(π/4−θ/8)1ia=−itan(π/4−θ/8)a=cot(π/4−θ/8)=tan(π/4+θ/8)
Case 4: 11/4=i
1ia=−ieiθ/4+1−ieiθ/4−1=1+sinθ/4−icosθ/4−1+sinθ/4−icosθ/4=1+cos(π/2−θ/4)−isin(π/2−θ/4)−1+cos(π/2−θ/4)−isin(π/2−θ/4)=2cos2(π/4−θ/8)−2isin(π/4−θ/8)cos(π/4−θ/8)−2sin2(π/4−θ/8)−2isin(π/4−θ/8)cos(π/4−θ/8)=i.cot(π/4−θ/8)1ia=itan(π/4+θ/8)a=−cot(π/4+θ/8)
Is it the right way to approach the problem ? and whats the easiest way to solve this ?
Answer
For the reality of the roots, take module on both sides :
|i−a−i−a|=|z|1/4=1
so if A is the point of affix a, I of affix i and I′ of affix −i, this says that AI=AI′, so A belongs to the perpendicular bisector of segment [II′], therefore the real axis.
For distinct roots, take argument : (→AI′;→AI)=14arg(z)+kπ2 with k∈{0,1,2,3}, this means 4 distinct points.
(There could be a better argument for last point).
With some calculus (which doesn't explain why roots are real) : let z=eiθ, and for k∈{0,1,2,3}, θk=θ/4+kπ/2. Equation solves as
a=eiθk−1i(eiθk+1)=eiθk/2−e−iθk/2i(eiθk/2+e−iθk/2)=tan(θk/2)=tan(θ/8+kπ/4)
OK, so it's real, but why ?
No comments:
Post a Comment