Saturday, 9 February 2013

complex numbers - For zinmathbbC,|z|=1, Prove that Big(frac1+ia1iaBig)4=z has all roots real and distinct




Given zC with |z|=1, then prove that the equation (1+ia1ia)4=z has all roots real and distinct





My Attempt
z=eiθz1/4=eiθ/4=1+ia1ia.11/4=1+ia1ia.(1,1,i,i)
Is it correct to introduce the quadratic root of unity for the complete solution ?



Case 1: 11/4=1
1ia=eiθ/4+1eiθ/41=2cos2θ/8+2isinθ/8.cosθ/82sin2θ/8+2isinθ/8.cosθ/81ia=icotθ/8a=tanθ/8
Case 2: 11/4=1
1ia=eiθ/4+1eiθ/41=2sin2θ/82isinθ/8.cosθ/82cos2θ/82isinθ/8.cosθ/81ia=itanθ/8a=cotθ/8
Case 3: 11/4=i
1ia=ieiθ/4+1ieiθ/41=1sinθ/4+icosθ/41sinθ/4+icosθ/4=1cos(π/2θ/4)+isin(π/2θ/4)1cos(π/2θ/4)+isin(π/2θ/4)=2sin2(π/4θ/8)+2isin(π/4θ/8)cos(π/4θ/8)2cos2(π/4θ/8)+2isin(π/4θ/8)cos(π/4θ/8)1ia=itan(π/4θ/8)a=cot(π/4θ/8)=tan(π/4+θ/8)
Case 4: 11/4=i
1ia=ieiθ/4+1ieiθ/41=1+sinθ/4icosθ/41+sinθ/4icosθ/4=1+cos(π/2θ/4)isin(π/2θ/4)1+cos(π/2θ/4)isin(π/2θ/4)=2cos2(π/4θ/8)2isin(π/4θ/8)cos(π/4θ/8)2sin2(π/4θ/8)2isin(π/4θ/8)cos(π/4θ/8)=i.cot(π/4θ/8)1ia=itan(π/4+θ/8)a=cot(π/4+θ/8)
Is it the right way to approach the problem ? and whats the easiest way to solve this ?


Answer



For the reality of the roots, take module on both sides :
|iaia|=|z|1/4=1
so if A is the point of affix a, I of affix i and I of affix i, this says that AI=AI, so A belongs to the perpendicular bisector of segment [II], therefore the real axis.




For distinct roots, take argument : (AI;AI)=14arg(z)+kπ2 with k{0,1,2,3}, this means 4 distinct points.



(There could be a better argument for last point).



With some calculus (which doesn't explain why roots are real) : let z=eiθ, and for k{0,1,2,3}, θk=θ/4+kπ/2. Equation solves as
a=eiθk1i(eiθk+1)=eiθk/2eiθk/2i(eiθk/2+eiθk/2)=tan(θk/2)=tan(θ/8+kπ/4)
OK, so it's real, but why ?


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...