Friday, 15 February 2013

trigonometry - Limit of $frac{1-cos x}{sin x}$



I don't understand the rewriting that's being done in this limit:



$$\lim_{x\to0} \frac{1−\cos x}{\sin x} = \lim_{x\to0} \frac{\sin x}{\cos x} $$




Why doesn't this simplify to $\frac{\sin x}{\sin x}$?


Answer



It doesn't. You can use l'Hospital to get
$$\lim_{x\to0} \frac{1-\cos x}{\sin x} = \lim_{x\to0} \frac{\sin x}{\cos x} = \tan 0 = 0$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...