I've been trying to solve this particular expression, rationalizing the numerator, and the denominator by conjugate multiplying, squaring, multiplying/dividing with x/x, nothing seems to work, I would appreciate any input.
limx→0√1+x−√1+x2√1+x−1
Answer
\begin{align} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{\sqrt{1+x}-1} &= \frac{\sqrt{1+x}-\sqrt{1+x^2}}{\sqrt{1+x}-1} \frac{\sqrt{1+x}+\sqrt{1+x^2}}{\sqrt{1+x}+1} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] &= \frac{(1+x)-(1+x^2)}{(1+x)-1} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] &= \frac{x(1-x)}{x} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] \end{align}
Now it's easy, isn't it?
No comments:
Post a Comment