Thursday, 28 February 2013

Solving a limit with radicals without l'Hopital



I've been trying to solve this particular expression, rationalizing the numerator, and the denominator by conjugate multiplying, squaring, multiplying/dividing with x/x, nothing seems to work, I would appreciate any input.




limx01+x1+x21+x1


Answer



\begin{align} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{\sqrt{1+x}-1} &= \frac{\sqrt{1+x}-\sqrt{1+x^2}}{\sqrt{1+x}-1} \frac{\sqrt{1+x}+\sqrt{1+x^2}}{\sqrt{1+x}+1} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] &= \frac{(1+x)-(1+x^2)}{(1+x)-1} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] &= \frac{x(1-x)}{x} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+\sqrt{1+x^2}}\\[6px] \end{align}
Now it's easy, isn't it?


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...