Thursday, 14 February 2013

calculus - How to prove absolute summability of sinc function?



We know that $$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx=\int_0^\infty \frac{\sin x}{x} dx=\frac{\pi}{2}.$$



How do I show that $$\int_0^\infty \left\vert\frac{\sin x}{x}\right\vert dx$$ converges?


Answer



It doesn't. Using the convexity of $1/x$,




$$\int_0^\infty \left\vert\frac{\sin x}{x}\right\vert \,\mathrm{d}x=\sum_{k=0}^\infty\int_{k\pi}^{(k+1)\pi}\left\vert\frac{\sin x}{x}\right\vert \,\mathrm{d}x>\sum_{k=0}^\infty\int_{k\pi}^{(k+1)\pi}\frac{\left\vert\sin x\right\vert}{(k+1/2)\pi} \,\mathrm{d}x=\frac{2}{\pi}\sum_{k=0}^\infty\frac{1}{k+1/2}\;,$$



which diverges since the harmonic series diverges.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...