Sunday, 26 May 2013

calculus - If limntoinftyfracan+1an=1, limntoinftyfraca2nan=frac12 then limntoinftyfraca3nan=frac13



Let {an} be a decreasing sequence and an>0 for all n.
If lim and \displaystyle\lim_{n\to\infty}\frac{a_{2n}}{a_n}=\frac{1}{2},

how to prove or disprove that
\displaystyle\lim_{n\to\infty}\frac{a_{3n}}{a_n}=\frac{1}{3} ?



Thank you.


Answer



The limit of \frac{a_{3n}}{a_n} need not be \frac13, because it need not exist.



Each n>0 can be written uniquely as 2^k + r, where 2^k \le n < 2^{k+1}. Define a_n (in terms of these k and r) piecewise as follows: a_n = \begin{cases} \frac{2^{1 - r/2^{k-1}}}{2^k} & \mbox{if }r < 2^{k-1} \\ \frac{1}{2^k} & \mbox{if }r \ge 2^{k-1}. \end{cases}




Essentially, for the first half of the range from 2^k to 2^{k+1}, a_n decreases from \frac{1}{2^{k-1}} to \frac1{2^k} geometrically, by factors of 2^{-1/2^{k-1}}. For the second half of that range, a_n stays at \frac1{2^k}.



It is identically true that \frac{a_{2n}}{a_n} = \frac12. Moreover, if n \ge 2^k, then 2^{-1/2^{k-1}} \le \frac{a_{n+1}}{a_n} \le 1, so \frac{a_{n+1}}{a_n} \to 1.



However, when n = 2^k, \frac{a_{3n}}{a_n} = \frac14, while \frac{a_{9n}}{a_{3n}} = \frac1{2^{5/4}}, so \frac{a_{3n}}{a_n} does not converge.



You might complain that the sequence a_n is not strictly decreasing. If this is a problem, just replace a_n by a_n' = a_n\left(1 + \frac1n\right). We have:





  • \frac{a'_{n+1}}{a'_n} = \frac{a_{n+1}}{a_n} \cdot \frac{1+\frac1{n+1}}{1+\frac1n} = \frac{a_{n+1}}{a_n} \left(1 - \frac1{(n+1)^2}\right), which still converges to 1.

  • \frac{a'_{2n}}{a'_n} = \frac{a_{2n}}{a_n} \cdot \frac{1 + \frac1{2n}}{1 + \frac1n} = \frac{a_{2n}}{a_n} \left(1 - \frac1{2n+2}\right), which still converges to \frac12.

  • \frac{a'_{3n}}{a'_n} = \frac{a_{3n}}{a_n} \cdot \frac{1 + \frac1{3n}}{1 + \frac1n} = \frac{a_{3n}}{a_n} \left(1 - \frac2{3n+3}\right), which still does not converge to anything.

  • Since we already had a_{n+1} \le a_n, we now have a'_{n+1} = a_{n+1} \left(1 + \frac1{n+1}\right) \le a_n \left(1 + \frac1{n+1}\right) < a_n \left(1 + \frac1n\right) = a'_n.



If the limit \frac{a_{3n}}{a_n} does exist, then we may proceed as in Andras's answer to show that it must equal \frac13:



If \frac{a_{3n}}{a_n} \to c, then \frac{a_{3^kn}}{a_n} \to c^k for any k, but we can bound \frac{a_{3^kn}}{a_n} between \frac{a_{2^\ell n}}{a_n} and \frac{a_{2^{\ell+1} n}}{a_n} for \ell such that 2^\ell < 3^k < 2^{\ell+1} (i.e., \ell = \lfloor k \log_2 3\rfloor). These two ratios converge to \frac{1}{2^{\ell}} and \frac1{2^{\ell+1}}, so we get that 2^{-\ell/k} < c < 2^{-(\ell+1)/k}. Taking k arbitrarily large, \frac{\ell}{k} \to \log_2 3, so c must be 2^{-\log_2 3} = \frac13.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...