The value of $$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{5 - 2{\sqrt6}}}{1+ \sqrt{6}}\right)$$is equal to
- $\frac{\pi}{6}$
- $\frac{\pi}{4}$
- $\frac{\pi}{3}$
- $\frac{\pi}{12} $
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{3} -\sqrt{2}}{1+ \sqrt{6}}\right)$$
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) -\tan^{-1}{\sqrt3} + \tan^{-1} {\sqrt2} $$
$$\implies\frac{\pi}{2} -\frac{\pi}{3}=\frac{\pi}{6}$$
Another possibility is
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) +\tan^{-1}{\sqrt3} - \tan^{-1} {\sqrt2} $$
How to solve this ?
Answer
$$\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\dfrac{\sqrt3-\sqrt2}{1+\sqrt3\cdot\sqrt2}$$
$$\implies\arctan\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\arctan\sqrt3-\arctan\sqrt2$$
$$\arctan\sqrt3=\dfrac\pi3$$ and
$$\arctan\sqrt2=\text{arccot}\dfrac1{\sqrt2}=\dfrac\pi2-\arctan\dfrac1{\sqrt2}$$
No comments:
Post a Comment