Saturday 25 May 2013

trigonometry - Find the value $tan^{-1}left(frac{1}{sqrt2}right) - tan^{-1}left(frac{sqrt{5 - 2{sqrt6}}}{1+ sqrt{6}}right)$



The value of $$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{5 - 2{\sqrt6}}}{1+ \sqrt{6}}\right)$$is equal to




  1. $\frac{\pi}{6}$

  2. $\frac{\pi}{4}$

  3. $\frac{\pi}{3}$

  4. $\frac{\pi}{12} $




$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{3} -\sqrt{2}}{1+ \sqrt{6}}\right)$$
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) -\tan^{-1}{\sqrt3} + \tan^{-1} {\sqrt2} $$
$$\implies\frac{\pi}{2} -\frac{\pi}{3}=\frac{\pi}{6}$$



Another possibility is
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) +\tan^{-1}{\sqrt3} - \tan^{-1} {\sqrt2} $$
How to solve this ?


Answer



$$\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\dfrac{\sqrt3-\sqrt2}{1+\sqrt3\cdot\sqrt2}$$




$$\implies\arctan\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\arctan\sqrt3-\arctan\sqrt2$$



$$\arctan\sqrt3=\dfrac\pi3$$ and



$$\arctan\sqrt2=\text{arccot}\dfrac1{\sqrt2}=\dfrac\pi2-\arctan\dfrac1{\sqrt2}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...