Friday, 17 May 2013

linear algebra - Cayley-Hamilton Theorem: characteristic polynomial and distinct eigenvalues



I do not know where to start for solving this exercise although I have the "official" solution. In the solution, I see that some variables are exchanged but I cannot connect the steps to a coherent "story". Some direct help is highly appreciated. I do know how to get the poles from a characteristic equation.




Exercise



Consider a matrix ARn×n with the characteristic polynomial
det



a) Show that if A has distinct eigenvalues (λ_1, λ_2, \ldots , λ_n), the following relationship holds:
\Lambda^n + a_{n-1}\Lambda^{n-1}+ \cdots + a_0 I = 0
with \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}



b) Now show that
A^n + a_{n-1}A^{n-1}+ \cdots + a_0 I = 0



(This proves the Cayley-Hamilton Theorem for distinct eigenvalues.)
Hint: Use the fact that a matrix A with distinct eigenvalues can be written as
A = T ΛT^{−1}; where Λ is diagonal.




Solution:



a) The characteristic equation is true for all eigenvalues of A, λ_1 . . . λ_n
\lambda^n + a_{n-1}\lambda^{n-1}+\cdots + a_0 = 0
\Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}
so \Lambda^n + a_{n-1} \Lambda^{n-1}+ \cdots + a_0 I = 0



This is the matrix characteristic equation.



b) With distinct eigenvalues and diagonal Λ we have
A=T\Lambda T^{-1} \\ A^2 = T \Lambda T^{-1} T \Lambda T^{-1} = T \Lambda^2 T^{-1} \\ \vdots \\ A^m=T \Lambda^m T^{-1}



Multiply the matrix characteristic equation by T (left) and T^{-1} (right) to obtain T \Lambda^n T^{-1} + a_{n-1}T \Lambda^{n-1} T^{-1}+\cdots + a_0 TT^{-1}= 0
A^n + a_{n-1}A^{n-1}+\cdots+a_0 I = 0



Answer



It seems that you have done. Let
\det(sI-A)=a(s)=s^n+a_{n-1}s^{n-1}+ \cdots + a_1 s+a_0 be the characteristic polynomial. We know by assumption that it has exactly n distinct roots, namely: \lambda_1,\dots,\lambda_n.



Let \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}\text{ } be the diagonal matrix whose entries are the roots of a(s).




We want to show that \Lambda^n + a_{n-1}\Lambda^{n-1}+ \cdots + a_0 I = 0. Since



\Lambda^k = \begin{pmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n^k \end{pmatrix},




thus \Lambda^n + a_{n-1}\Lambda^{n-1}+ \cdots + a_0 I= \begin{pmatrix} a(\lambda_1) & 0 & \cdots & 0 \\ 0 & a(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a(\lambda_n) \end{pmatrix}= \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix}
because \lambda_i are roots of a(s).



The second part ask to prove the theorem for a matrix A similar to \Lambda, i.e.



A^n + a_{n-1}A^{n-1}+ \cdots + a_0 I = 0 .



Thus A = T ΛT^{−1}; where Λ is diagonal, by definition of similarity; and




A^k = T\Lambda^k T^{-1} \quad \forall k\in \Bbb N.



Finally: A^n + a_{n-1}A^{n-1}+\cdots+a_0 I = 0\Longleftrightarrow T \Lambda^n T^{-1} + a_{n-1}T \Lambda^{n-1} T^{-1}+\cdots + a_0 TT^{-1}= 0
\Longleftrightarrow T( \Lambda^n + a_{n-1} \Lambda^{n-1} +\cdots + a_0I)T^{-1}= 0 \Longleftrightarrow \Lambda^n + a_{n-1} \Lambda^{n-1} +\cdots + a_0I =T^{-1}0T=0.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...