Saturday, 25 May 2013

sequences and series - Why does $1+2+dots+2003=dfrac{2004cdot2003}2$?





Why does $1+2+\dots+2003=\dfrac{2004\cdot2003}2$?





Sorry if this is missing context; not really much to add...


Answer



$$\begin{array}{ccc}
S&=&1&+&2&+&3&+&\ldots&+&2001&+&2002&+&2003\\
S&=&2003&+&2002&+&2001&+&\ldots&+&3&+&2&+&1\\ \hline
2S&=&2004&+&2004&+&2004&+&\ldots&+&2004&+&2004&+&2004
\end{array}$$



There are $2003$ columns, so $2S=2003\cdot2004$, and therefore $S=\dfrac{2003\cdot2004}2$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...