Friday, 17 May 2013

real analysis - Finding $lim_{n to infty}sum_{k=n}^{2n}frac{1}{k}$

Let $a_n$ be defined via
$a_n = \sum_{k=n}^{2n}\frac{1}{k}$. Compute, $\lim_{n\to\infty}a_n$.



I have an handwavy argument that since $\lim_{n\to\infty}\left(\sum_{k=1}^n \frac{1}{k} - \log(n) \right) = \gamma$, where $\gamma$ is the Euler-Mascheroni constant, I think that the limit above is $\log(2)$, but I am a bit confused. Can someone help me with this? Thanks!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...