Sunday, 23 November 2014

calculus - Antiderivative of sec(x)


Possible Duplicates:
Evaluating $\\int P(\\sin x, \\cos x) \\text{d}x$
Ways to evaluate $\int \sec \theta \, \mathrm d \theta$







Using Mathematica to get the antiderivative for sec(x), I get $$-\log(\cos\frac{x}{2}-\sin\frac{x}{2})+\log(\cos\frac{x}{2}+\sin\frac{x}{2}).$$



This doesn't look familiar, so, I'm thinking there's probably some identity or other way to transform this...



Any insight would be appreciated.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...