I w'd surprised if this integral $\int\tan ( e^{-x²})\ d x$ has a closed form since :$\int_{-\infty}^{+\infty }\tan ( e^{-x²})\ d x$ is assumed as a constant by wolfram alpha and The inverse calculator didn't give me any thing such that it's value is $2.27591....$
, then any way to show that if it has a closed form , or it is just a constant ?
Sunday, 23 November 2014
integration - Closed form of :$inttan ( e^{-x²}) d x$ Over reals
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment