Saturday, 29 November 2014

derivatives - Differentiate $frac{x^3}{{(x-1)}^2}$





Find $\frac{d}{dx}\frac{x^3}{{(x-1)}^2}$




I start by finding the derivative of the denominator, since I have to use the chain rule.



Thus, I make $u=x-1$ and $g=u^{-2}$. I find that $u'=1$ and $g'=-2u^{-3}$. I then multiply the two together and substitute $u$ in to get:



$$\frac{d}{dx}(x-1)^{2}=2(x-1)$$



After having found the derivative of the denominator I find the derivative of the numerator, which is $3x^2$. With the two derivatives found I apply the quotient rule, which states that




$$\frac{d}{dx}(\frac{u(x)}{v(x)})=\frac{v'u-vu'}{v^2}$$



and substitute in the numbers



$$\frac{d}{dx}\frac{x^3}{(x-1)^2}=\frac{3x^2(x-1)^2-2x^3(x-1)}{(x-1)^4}$$



Can I simplify this any further?Is the derivation correct?


Answer



You're mixing the product rule and the quotient rule. You can apply each of them, but not simultaneously.





  • by the product rule: remember $\dfrac{\mathrm d}{\mathrm dx}\Bigl(\dfrac1{x^n}\Bigr)=-\dfrac n{x^{n+1}}$, so
    \begin{align}
    \dfrac{\mathrm d}{\mathrm dx}\biggl(\dfrac{x^3}{(1-x)^2}\biggr)&=\dfrac{\mathrm d}{\mathrm dx}(x^3)\cdot\dfrac1{(1-x)^2}+x^3\dfrac{\mathrm d}{\mathrm dx}\dfrac1{(1-x)^2} \\
    &= \frac{3x^2}{(1-x)^2}+\frac{2x^3}{(1-x)^3} =\frac{x^2\bigl(3(1-x)+2x\bigr)}{(1-x)^3}\\&
    =\frac{x^2(3-x)}{(1-x)^3}.
    \end{align}

  • by the quotient rule:
    $$\dfrac{\mathrm d}{\mathrm dx}\biggl(\dfrac{x^3}{(1-x)^2}\biggr)=\frac{3x^2(1-x)^2+x^3\cdot2(1-x)}{(1-x)^4}=\frac{x^2\color{red}{(\not1-\not x)}\bigl(3(1-x)+2x\bigr)}{( 1-x)^{\color{red}{\not4}\,3}}=\dots$$


  • Since there are exponents, logarithmic differentiation may help make it shorter. It's simpler to use it with Lagrange's notations: set $f(x)=\dfrac{x^3}{(1-x)^2}$. Then
    $$\frac{f'(x)}{f(x)}=\frac 3x+\frac2{1-x}=\frac{3-x}{x(1-x)}, \quad\text{so }\;f'(x)=\frac{f'(x)}{f(x)}\cdot f(x)=\dotsm $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...