Monday, 8 February 2016

algebra precalculus - how can one solve for $x$, $x =sqrt{2+sqrt{2+sqrt{2cdots }}}$








how can one solve for $x$, $x =\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2\cdots }}}}}}$



we know, if $x=\sqrt[]{2+\sqrt{2}}$, then, $x^2=2+\sqrt{2}$



now, if $x=\sqrt[]{2+\sqrt{2}}$, then, $(x-\sqrt{2})(x+\sqrt{2})=\sqrt{2}$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...