how can one solve for $x$, $x =\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2\cdots }}}}}}$
we know, if $x=\sqrt[]{2+\sqrt{2}}$, then, $x^2=2+\sqrt{2}$
now, if $x=\sqrt[]{2+\sqrt{2}}$, then, $(x-\sqrt{2})(x+\sqrt{2})=\sqrt{2}$
how can one solve for $x$, $x =\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2\cdots }}}}}}$
we know, if $x=\sqrt[]{2+\sqrt{2}}$, then, $x^2=2+\sqrt{2}$
now, if $x=\sqrt[]{2+\sqrt{2}}$, then, $(x-\sqrt{2})(x+\sqrt{2})=\sqrt{2}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment