Monday, 8 February 2016

summation - Evaluate sumnj=0(1)n+jnchoosejn+jchoosejfrac1(j+1)2



I want to evaluate the sum



\displaystyle \sum_{j=0}^n(-1)^{n+j}{n\choose j}{{n+j}\choose j}\frac{1}{(j+1)^2}



My approach so far has been the possible use of shifted Legendre polynomial. We know



Q_n(x)=\displaystyle \sum_{j=0}^n(-1)^{n+j}{n\choose j}{{n+j}\choose j}x^j




But I am not being able to relate these two. I see that



\displaystyle \int_0^1Q_n(x)dx=\sum_{j=0}^n(-1)^{n+j}{n\choose j}{{n+j}\choose j}\frac{1}{j+1}



but how do I get \dfrac{1}{(j+1)^2} ? I need some hint for this.


Answer



Use Kelenner's hint about
\int_{0}^{1}x^j(-\log x)\,dx = \frac{1}{(1+j)^2}\tag{1}
and exploit the fact that (-\log x) has a nice representation in terms of shifted Legendre polynomials:




(-\log x) = 1+\sum_{j\geq 1}\frac{(-1)^j(2j+1)}{j(j+1)}Q_j(x)\tag{2}
since, for any n\geq 1,
\int_{0}^{1}(-\log x)Q_n(x)\,dx = \color{red}{\frac{(-1)^n}{n(n+1)}}\tag{3}
can be proved through Rodrigues' formula and integration by parts (the derivative of (-\log x) is simple to deal with).


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...