Tuesday, 9 February 2016

calculus - Proving $sum_{k=1}^n{k^2}=frac{n(n+1)(2n+1)}{6}$ without induction




I was looking at: $$\sum_{k=1}^n{k^2}=\frac{n(n+1)(2n+1)}{6}$$




It's pretty easy proving the above using induction, but I was wondering what is the actual way of getting this equation?


Answer



$$n^{3}-(n-1)^{3}=3n^{2}+3n+1$$
$$(n-1)^{3}-(n-2)^{3}=3(n-1)^{2}+3(n-1)+1$$
$$\vdots$$
$$2^{3}-1^{3}=3(1)^{2}+3(1)+1$$



Now use telescopic cancellation.



Here are some "proof without words"(I find them more elegant):




Sum of squares



Sum of Squares(2)



Finally a more generalized form:$$1^{k}+2^{k}+\cdots+n^{k}=\sum\limits_{i=1}^{k}S(k,i)\binom{n+1}{i+1}i!$$
Where S(k,i) represents the Stirling number of the second kind.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...