Wednesday, 3 February 2016

Quadratic Polynomial with complex coefficients




Let polynomial $p(z)=z^2+az+b$ be such that $a$and $b$ are complex numbers and $|p(z)|=1$ whenever $|z|=1$. Prove that $a=0$ and $b=0$.



I could not make much progress.
I let $z=e^{i\theta}$ and $a=a_1+ib_1$ and $b=a_2+ib_2$



Using these values in $P(z)$ i got
$|P (z)|^2=1=(\cos (2\theta)-a_2\sin (\theta)+a_1\cos (\theta)+b_1)^2+(\sin(2\theta)+a_1\sin (\theta)+a_2\cos (\theta)+b_2)^2$



But i dont see how to proceed further neither can i think of any other approach any other approach.
So, someone please help.

I dont know complex analysis so it would be more helpful if someone can provide hints/solutions that dont use complex analysis.


Answer



For every $z\in \mathbb{C}$ we have
$$
|p(z)|^2=(z^2+az+b)(\bar{z}^2+\bar{a}\bar{z}+\bar{b})=|z|^4+a\bar{z}|z|^2+\bar{a}z|z|^2+|a|^2|z|^2+\bar{b}z^2+b\bar{z}^2+a\bar{b}z+\bar{a}b\bar{z}+|b|^2,
$$
in particular, when $|z|=1$, we have:
$$
|p(z)|^2=\bar{b}z^2+b\bar{z}^2+(a+\bar{a}b)\bar{z}+(\bar{a}+a\bar{b})z+|a|^2+|b|^2+1.
$$

Since $|p(z)|=1$ when $|z|=1$, we have:
$$\tag{1}
\bar{b}z^2+b\bar{z}^2+(a+\bar{a}b)\bar{z}+(\bar{a}+a\bar{b})z+|a|^2+|b|^2=0.
$$
Putting $z=-1,1,-i,i$ in (1), we get:
$$
\left\{
\begin{array}{lcc}
\bar{b}+b-(a+\bar{a}b)-(\bar{a}+a\bar{b})+|a|^2+|b|^2&=&0\\
\bar{b}+b+(a+\bar{a}b)+(\bar{a}+a\bar{b})+|a|^2+|b|^2&=&0\\

-\bar{b}-b-i(a+\bar{a}b)-i(\bar{a}+a\bar{b})+|a|^2+|b|^2&=&0\\
-\bar{b}-b+i(a+\bar{a}b)+i(\bar{a}+a\bar{b})+|a|^2+|b|^2&=&0
\end{array}\right.,
$$
and combining these four identities we have:
$$
4(|a|^2+|b|^2)=0.
$$
Thus $a=b=0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...