Let polynomial p(z)=z2+az+b be such that aand b are complex numbers and |p(z)|=1 whenever |z|=1. Prove that a=0 and b=0.
I could not make much progress.
I let z=eiθ and a=a1+ib1 and b=a2+ib2
Using these values in P(z) i got
|P(z)|2=1=(cos(2θ)−a2sin(θ)+a1cos(θ)+b1)2+(sin(2θ)+a1sin(θ)+a2cos(θ)+b2)2
But i dont see how to proceed further neither can i think of any other approach any other approach.
So, someone please help.
I dont know complex analysis so it would be more helpful if someone can provide hints/solutions that dont use complex analysis.
Answer
For every z∈C we have
|p(z)|2=(z2+az+b)(ˉz2+ˉaˉz+ˉb)=|z|4+aˉz|z|2+ˉaz|z|2+|a|2|z|2+ˉbz2+bˉz2+aˉbz+ˉabˉz+|b|2,
in particular, when |z|=1, we have:
|p(z)|2=ˉbz2+bˉz2+(a+ˉab)ˉz+(ˉa+aˉb)z+|a|2+|b|2+1.
Since |p(z)|=1 when |z|=1, we have:
ˉbz2+bˉz2+(a+ˉab)ˉz+(ˉa+aˉb)z+|a|2+|b|2=0.
Putting z=−1,1,−i,i in (1), we get:
{ˉb+b−(a+ˉab)−(ˉa+aˉb)+|a|2+|b|2=0ˉb+b+(a+ˉab)+(ˉa+aˉb)+|a|2+|b|2=0−ˉb−b−i(a+ˉab)−i(ˉa+aˉb)+|a|2+|b|2=0−ˉb−b+i(a+ˉab)+i(ˉa+aˉb)+|a|2+|b|2=0,
and combining these four identities we have:
4(|a|2+|b|2)=0.
Thus a=b=0.
No comments:
Post a Comment