Monday, 5 February 2018

algebra precalculus - How to simplify sumki=1binomn+i1i?




How to simplify \sum_{i=1}^{k}\binom{n + i - 1}{i}? I tried reducing the sum to \binom{n}{1}, \binom{n}{2}, \binom{n}{3} and so on but couldn't get a pattern.


Answer



The problem becomes trivial on using Pascal's Rule. Using it, we have,




\binom{n+i-1}{i}=\binom{n+i}{i}-\binom{n+i-1}{i-1}



Now, substituting this into our required sum (say S) gives us a telescoping sum (the middle terms gets cancelled out).



S=\sum_{i=1}^k \binom{n+i-1}{i}=\sum_{i=1}^k \left\{\binom{n+i}{i}-\binom{n+i-1}{i-1}\right\}\\ \implies S=\binom{n+1}{1}-\binom{n}{0}+\binom{n+2}{2}-\binom{n+1}{1}+\ldots +\binom{n+k}{k}-\binom{n+k-1}{k-1}\\ \implies S=\binom{n+k}{k}-\binom{n}{0}\\ \implies \boxed{S=\dbinom{n+k}{k}-1}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...