Sunday, 18 February 2018

real analysis - Infinity norm related to $L_p(X)$ norm on finite measure space $X$.

Let $(X, \cal M, \mu)$ be a measure space with $\mu(X)<\infty$. Why
\begin{align}
\lim_{p\to\infty}\|f\|_p=\|f\|_\infty
\end{align}
for all $f\in L_\infty$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...