Thursday, 8 February 2018

Existence of a smallest integer greater than some real number

In Stephen Abbott's Understanding Analysis, when proving that the set of rational numbers is dense in the set of real numbers, Abbott picks an integer $m$ such that $$m - 1 \leqslant na < m,$$ where $n$ and $a$ are a natural number and a real number respectively.




Intuitively it makes sense that such an $m$ exists, but it seems to me that Abbott is taking liberties here. How do I know from the fact that the set of reals is a complete ordered field that such an $m$ exists? (Abbott doesn't discuss the real number axioms but I know them from elsewhere.)

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...