I'm interesting to know how do i evaluate this sum :$$\sum_{n=1}^{\infty}\frac{{(-1)}^{n²}}{{(i\pi)}^{n}}$$, I have tried to evaluate it using two partial sum for odd integer $n$ and even integer $n$ ,but i can't since it's alternating series ,and i would like to know if it's well know series also what about it's values :real or complex ? .
Note : wolfram alpha showed that is a convergent series by the root test
Thank you for any help
No comments:
Post a Comment