How to prove
∫∞0erf(x)erfc(x)dx=√2−1√π with erfc(x) is the complementary error function, I have used integration by part but i don't succed
Answer
The given integral equals
4π∫+∞0∫x0e−a2da∫+∞xe−b2dbdx=4π∭0≤a≤x≤be−(a2+b2)dadbdx
or
4π∬0≤a≤b(b−a)e−(a2+b2)dadb=4π∫+∞0∫π/40(cosθ−sinθ)ρ2e−ρ2dθdρ
or
4π(√2−1)∫+∞0ρ2e−ρ2dρ=4π(√2−1)√π4=√2−1√π.
No comments:
Post a Comment