Saturday, 3 February 2018

integration - Any simple way for proving intinfty0mathrmerf(x)erfc(x),dx=fracsqrt21sqrtpi?



How to prove
0erf(x)erfc(x)dx=21π with erfc(x) is the complementary error function, I have used integration by part but i don't succed


Answer



The given integral equals




4π+0x0ea2da+xeb2dbdx=4π0axbe(a2+b2)dadbdx



or



4π0ab(ba)e(a2+b2)dadb=4π+0π/40(cosθsinθ)ρ2eρ2dθdρ
or
4π(21)+0ρ2eρ2dρ=4π(21)π4=21π.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...