Monday, 5 February 2018

number theory division of power for the case $(n^r −1)$ divides $(n^m −1)$ if and only if $r$ divides $m$.

Let $n > 1$ and $m$ and $r$ be positive integers. Prove that $(n^r −1)$ divides $(n^m −1)$ if and only if $r$ divides $m$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...