I have to show that this sequence
$$
x_n=\sqrt{a+x_{n-1}} \hbox{ with } x_1=\sqrt{a}
$$
is a Cauchy sequence for every $a>0$. I have done the following calculations:
$$
\left| x_{n+2}-x_{n+1} \right|=\left| \sqrt{a+x_{n+1}}-x_{n+1}\right|=\left|\frac{a+x_{n+1}-x_{n+1}^2}{\sqrt{a+x_{n+1}}+x_{n+1}} \right|= \left|\frac{x_{n+1}-x_n}{\sqrt{a+x_{n+1}}+x_{n+1}}\right|
$$
I don't come up with a boundary for the denominator so that
$$
\left|\frac{x_{n+1}-x_n}{\sqrt{a+x_{n+1}}+x_{n+1}}\right|
Any hint? I know I can use induction to easily prove that the sequence is convergent, but I'd like to prove it's Cauchy without using convergence. Thank you in advance.
Wednesday, 4 July 2018
Cauchy sequence $x_n=sqrt{a+x_{n-1}}$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment