Thursday, 26 July 2018

Complex sum of sine and cosine functions


By using the complex representations of sine and cosine, show that $$\sum_{m=0}^n\sin m\theta =\frac{\sin\frac{n}{2}\theta\sin\frac{n+1}{2}\theta}{\sin\frac{1}{2}\theta}$$





So I am not too sure how to go about this proof. I tried to substitute sine for its complex representation but I can't see how to evaluate the sum?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...