Tuesday, 31 July 2018

multivariable calculus - Why does $left(int_{-infty}^{infty}e^{-t^2} dt right)^2= int_{-infty}^{infty}int_{-infty}^{infty}e^{-(x^2 + y^2)}dx,dy$?


Why does $$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right)^2 = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy ?$$





This came up while studying Fourier analysis. What's the underlying theorem?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...