Why does $$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right)^2 = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy ?$$
This came up while studying Fourier analysis. What's the underlying theorem?
Why does $$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right)^2 = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy ?$$
This came up while studying Fourier analysis. What's the underlying theorem?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment