Saturday, 14 July 2018

trigonometry - Proof of sin2x+cos2x=1 using Euler's Formula



How would you prove sin2x+cos2x=1 using Euler's formula?




eix=cos(x)+isin(x)



This is what I have so far:



sin(x)=12i(eixeix)



cos(x)=12(eix+eix)


Answer



Multiply eix=cos(x)+isin(x) by the conjugate identity ¯eix=cos(x)isin(x) and use that ¯eix=eix hence eix¯eix=eixix=1.



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...