Wednesday, 25 July 2018

limits - Evaluate limntoinftyfrac(n!)1/nn.











Evaluate

lim



Can anyone help me with this? I have no idea how to start with. Thank you.


Answer



Let's work it out elementarily by wisely applying Cauchy-d'Alembert criterion:



\lim_{n\to\infty} \frac{n!^{\frac{1}{n}}}{n}=\lim_{n\to\infty}\left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)^{(n+1)}}\cdot \frac{n^{n}}{n!} = \lim_{n\to\infty} \frac{n^{n}}{(n+1)^{n}} =\lim_{n\to\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}.



Also notice that by applying Stolz–Cesàro theorem you get the celebre limit:




\lim_{n\to\infty} (n+1)!^{\frac{1}{n+1}} - (n)!^{\frac{1}{n}} = \frac{1}{e}.



The sequence L_{n} = (n+1)!^{\frac{1}{n+1}} - (n)!^{\frac{1}{n}} is called Lalescu sequence, after the name of a great Romanian mathematician, Traian Lalescu.



Q.E.D.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...