Saturday, 4 May 2013

integration - Limit involving Riemann sums



I want to calculate the following limit
$$\lim_{n\to\infty} \sin\left(\frac{\pi}{n}\right)\sum_{k=1}^n\frac{1}{2+\cos\left(\frac{k\pi}{n}\right)}$$
and I know I can use Riemann sums to transform the limit to a integral, but don't see how to do this in this particular case.



Answer



Hint:$$\lim _{ n\to \infty } \sin \left( \frac { \pi }{ n } \right) \sum _{ k=1 }^{ n } \frac { 1 }{ 2+\cos \left( \frac { k\pi }{ n } \right) } =\lim _{ n\to \infty } \frac { \sin \left( \frac { \pi }{ n } \right) }{ \frac { \pi }{ n } } \frac { \pi }{ n } \sum _{ k=1 }^{ n } \frac { 1 }{ 2+\cos \left( \frac { k\pi }{ n } \right) } =\\ =\pi \lim _{ n\to \infty } \frac { 1 }{ n } \sum _{ k=1 }^{ n } \frac { 1 }{ 2+\cos \left( \frac { k\pi }{ n } \right) } =\pi \int _{ 0 }^{ 1 }{ \frac { dx }{ 2+\cos { \pi x } } } $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...