I need to evaluate ∫sin−1(x)cos−1(x)dx.
Can anyone please give me an idea or a hint ? Thanks.
Answer
we will use the fact that sin−1x+cos−1x=π/2 and a change of variable sin−1x=t,x=sint,dx=costdt with these we get ∫sin−1(x)cos−1(x)dx=∫t(π/2−t)costdt=∫(π/2t−t2)dcost=(π/2t−t2)cost−∫(π/2−2t)costdt=(π/2t−t2)cost+(π/2−2t)sint−2∫sintdt=(π/2t−t2)cost+(π/2−2t)sint+2cost+C
No comments:
Post a Comment