Tuesday, 30 September 2014

calculus - How to evaluate $int sin^{-1}(x)cos^{-1}(x) , dx$?



I need to evaluate $$\int \sin^{-1}(x)\cos^{-1}(x) \, dx.$$ Can anyone please give me an idea or a hint ? Thanks.


Answer



we will use the fact that $\sin^{-1} x + \cos ^{-1} x = \pi/2$ and a change of variable $\sin^{-1} x = t, x = \sin t, dx = \cos t \, dt$ with these we get $\begin{align}\int \sin^{-1}(x)\cos^{-1}(x) \, dx &=
\int t(\pi/2 - t)\cos t \, dt \\

&=\int (\pi/2 t - t^2) \, d \cos t \\
&= (\pi/2 t - t^2)\cos t - \int (\pi/2 - 2t) \cos t\, dt \\
&= (\pi/2 t - t^2)\cos t + (\pi/2 - 2t) \sin t - 2 \int \sin t\, dt\\
&= (\pi/2 t - t^2)\cos t + (\pi/2 - 2t) \sin t + 2 \cos t +C\\\end{align}$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...