I want to investigate the value of $\lim_\limits{x \to 0+}{e^{\frac{1}{x^2}}\sin x}$. Since the expontial tends really fast to infinity but the sine quite slowly to 0 in comparison I believe the limit to be infinity. But I cannot find I way to prove it. I tried rewriting using the standard limit $\frac{\sin x}{x}$ as $\frac{\sin x}{x}\cdot xe^{\frac{1}{x^2}}$ but I still get an indeterminate form "$1 \cdot 0 \cdot \infty$".
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment