Tuesday, 23 September 2014

elementary number theory - $ 7mid x text{ and } 7mid y Longleftrightarrow 7mid x^2+y^2 $


Show that
$$ 7\mid x \text{ and } 7\mid y \Longleftrightarrow 7\mid x^2+y^2 $$




Indeed,



First let's show



$7\mid x \text{ and } 7\mid y \Longrightarrow 7\mid x^2+y^2 $




we've $7\mid x \implies 7\mid x^2$ the same for $7\mid y \implies 7\mid y^2$ then
$ 7\mid x^2+y^2 $




  • Am i right and can we write $a\mid x \implies a\mid x^P ,\ \forall p\in \mathbb{N}^*$



Now let's show




$7\mid x^2+y^2 \Longrightarrow 7\mid x \text{ and } 7\mid y$



$7\mid x^2+y^2 \Longleftrightarrow x^2+y^2=0 \pmod 7 $



for



\begin{array}{|c|c|c|c|c|} \hline
x& 0 & 1 & 2& 3 & 4 & 5 & 6 \\ \hline
x^2& 0 & 1 & 4& 2 & 2 & 4 & 1 &\pmod 7\\ \hline
y& 0 & 1 & 2& 3 & 4 & 5 & 6 \\ \hline

y^2& 0 & 1 & 4& 2 & 2 & 4 & 1 & \pmod 7 \\ \hline
\end{array}



which means we have one possibility that $x=y= 0 \pmod 7 $




  • Am I right and are there other ways?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...