Show that
7∣x and 7∣y⟺7∣x2+y2
Indeed,
First let's show
7∣x and 7∣y⟹7∣x2+y2
we've 7∣x⟹7∣x2 the same for 7∣y⟹7∣y2 then
7∣x2+y2
- Am i right and can we write a∣x⟹a∣xP, ∀p∈N∗
Now let's show
7∣x2+y2⟹7∣x and 7∣y
7\mid x^2+y^2 \Longleftrightarrow x^2+y^2=0 \pmod 7
for
\begin{array}{|c|c|c|c|c|} \hline x& 0 & 1 & 2& 3 & 4 & 5 & 6 \\ \hline x^2& 0 & 1 & 4& 2 & 2 & 4 & 1 &\pmod 7\\ \hline y& 0 & 1 & 2& 3 & 4 & 5 & 6 \\ \hline y^2& 0 & 1 & 4& 2 & 2 & 4 & 1 & \pmod 7 \\ \hline \end{array}
which means we have one possibility that x=y= 0 \pmod 7
- Am I right and are there other ways?
No comments:
Post a Comment