Saturday, 13 September 2014

real analysis - Limit exercise from Rudin: $limlimits_{n to infty} sqrt{n^2+n} -n$




This is Chapter 3, Exercise 2 of Rudin's Principles.



Calculate $\lim\limits_{n \to \infty} \sqrt{n^2+n} -n$.



Hints will be appreciated.


Answer



Hint:
$$\frac{\sqrt{n^2+n}-n}{1} = \frac{\sqrt{n^2+n}-\sqrt{n^2}}{1}\times \frac{\sqrt{n^2+n}+\sqrt{n^2}}{\sqrt{n^2+n}+\sqrt{n^2}} = \cdots$$
I will expand more if needed.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...