This is Chapter 3, Exercise 2 of Rudin's Principles.
Calculate $\lim\limits_{n \to \infty} \sqrt{n^2+n} -n$.
Hints will be appreciated.
Answer
Hint:
$$\frac{\sqrt{n^2+n}-n}{1} = \frac{\sqrt{n^2+n}-\sqrt{n^2}}{1}\times \frac{\sqrt{n^2+n}+\sqrt{n^2}}{\sqrt{n^2+n}+\sqrt{n^2}} = \cdots$$
I will expand more if needed.
No comments:
Post a Comment